## Why and How: MRI Physics



Patrick McDaniel 10/10/19



(1) Why are some regions bright, some dark?
*IE: What are we physically measuring? How do we make this measurement?*



(1) Why are some regions bright, some dark?
*IE: What are we physically measuring? How do we make this measurement?*

(2) How do we form an image?*IE: How do we get different mesurements from different spatial locations?* 



(1) Why are some regions bright, some dark?
*IE: What are we physically measuring? How do we make this measurement?*

(2) How do we form an image?*IE: How do we get different mesurements from different spatial locations?* 



### MRI Measures Water\*

• Most abundant substance in human body



Your Brain:

- Volume  $\approx 1400$  mL
- $\sim 5 \cdot 10^{25} \text{ x H}_2\text{O}$

1mm<sup>3</sup> of Brain: •  $\sim 3 \cdot 10^{19} \text{ x H}_2\text{O}$ 

### MRI Measures Water\*

- Most abundant substance in human body
- Provides a wide range of diagnostic information



Your Brain:

- Volume  $\approx 1400 \text{ mL}$
- $\sim 5 \cdot 10^{25} \text{ x H}_2\text{O}$

1mm<sup>3</sup> of Brain: •  $\sim 3 \cdot 10^{19} \text{ x H}_2\text{O}$ 

### (N)MRI uses NMR to measure <sup>1</sup>H nuclei in water

(N)MR : (Nuclear) Magnetic Resonance

Measure Signal from Atomic Nuclei (usually <sup>1</sup>H)

### (N)MRI uses NMR to measure <sup>1</sup>H nuclei in water

(N)MR : (Nuclear) Magnetic Resonance

Measure Signal from Atomic Nuclei (usually <sup>1</sup>H)

> Measure Magnetic Properties of <sup>1</sup>H

### (N)MRI uses NMR to measure <sup>1</sup>H nuclei in water

(N)MR : (Nuclear) Magnetic Resonance

Measure Signal from Atomic Nuclei (usually <sup>1</sup>H)

> Measure Magnetic Properties of <sup>1</sup>H

Make Measurement by exploiting *resonance* phenomenon (dependence on a specific frequency)

## MRI uses NMR to measure <sup>1</sup>H nuclei in water

• <sup>1</sup>H gives strongest NMR signal among stable elements



Your Brain:

- Volume  $\approx 1400$  mL
- $\sim 5 \cdot 10^{25} \text{ x H}_2 \text{O}$
- $\sim 10^{26}$  x <sup>1</sup>H nuclei

1mm<sup>3</sup> of Brain:

- $\sim -3 \cdot 10^{19} \text{ x} \text{ H}_2 \text{O}$
- $\sim 6 \cdot 10^{19} \text{ x}^{1} \text{H}$  nuclei

99.98% of Hydrogen is <sup>1</sup>H isotope <sup>1</sup>H Nucleus = Proton

### NMR measures proton magnetism

- Proton Mass:  $m_p = 1.7 \cdot 10^{-27} \, [kg]$
- Proton Charge:  $q_p = 1.6 \cdot 10^{-19} [C]$

### NMR measures proton magnetism

- Proton Mass:  $m_p = 1.7 \cdot 10^{-27} [kg]$   $m_p$

Proton can be thought of as spinning\*

- "Spin" Angular Momentum:  $\overline{S}_p = \hbar \cdot \sqrt{\frac{3}{4}}$
- Magnetic Dipole Moment:  $\bar{\mu}_p = 2\pi\gamma_p \cdot \bar{S}_p$

"Gyromagnetic Ratio" 
$$\gamma_p = 42.58 \left[ \frac{MHz}{T} \right]$$

### Protons align with MRI magnetic field

- Magnetic Fields
  - MRI magnetic field  $\overline{B}_0$ : 1.5 T 7 T
  - Rare-earth magnet : 1 T
  - Earth's field : 50 μT



## Protons align with MRI magnetic field

- Magnetic Fields
  - MRI magnetic field  $\overline{B}_0$ : 1.5 T 7 T
  - Rare-earth magnet : 1 T
  - Earth's field : 50 μT





 $\sim 6 \cdot 10^{19}$ x <sup>1</sup>H nuclei per mm<sup>3</sup>

## Protons align with MRI magnetic field

- Magnetic Fields
  - MRI magnetic field  $\overline{B}_0$ : 1.5 T 7 T
  - Rare-earth magnet : 1 T
  - Earth's field : 50 μT
- Weak alignment due to random thermal fluctuations





$$\overline{M}_0 = \sum \overline{\mu}_i \sim \frac{\gamma^2 h^2}{4k_b T} \cdot \overline{B}_0$$

 $\sim 10^{-5}$  of maximum available magnetization

NMR measurements involve "excitation" and "detection"

Excitation



90° Excitation rotates "spin" orientation

Ζ

V

NMR measurements involve "excitation" and "detection"

Excitation

Detection



 90° Excitation rotates "spin" orientation • Proton precesses around  $\overline{B}_0$ 

Acquire signal



#### Gyroscope



Wheel Spinning

• Angular velocity  $\omega$ 

Angular momentum •  $\overline{L} = I \cdot \omega \cdot \hat{R}$ 

Gravitational Force •  $\overline{F} = M \cdot g \cdot (-\hat{z})$ 

Torque on wheel •  $\overline{\tau} = \overline{R} \times \overline{F}$ 

7

#### Gyroscope



Wheel Spinning

• Angular velocity  $\omega$ 

Angular momentum •  $\overline{L} = I \cdot \omega \cdot \hat{R}$ 

Gravitational Force •  $\overline{F} = M \cdot g \cdot (-\hat{z})$ 

Torque on wheel •  $\overline{\tau} = \overline{R} \times \overline{F}$ 

7

Solve equation of motion:

$$\frac{d}{dt}\overline{L}=\overline{\tau}$$

$$\frac{d}{dt}\hat{R} = \frac{-MgR}{I\omega} \cdot \left(\hat{R} \times \hat{z}\right)$$

 $\widehat{R}(t) = \cos(\Omega t) \, \widehat{x} + \sin(\Omega t) \, \widehat{y}$   $\uparrow \qquad \uparrow$ Precession with frequency  $\Omega$   $\bullet \quad \Omega = \frac{M \cdot g \cdot R}{2}$ 

#### Proton in Magnetic Field



Angular momentum

$$L = S_p$$
  
$$\bar{\mu}_p = \gamma \cdot \bar{S}_p$$

Torque on proton •  $\overline{\tau} = \overline{\mu}_p \times \overline{B}_0$ 

#### Proton in Magnetic Field

Solve equation of motion:



Х

Angular momentum •  $\bar{L} = \bar{S}_p$ •  $\bar{\mu}_p = \gamma \cdot \bar{S}_p$ *"Bloch Equation"* 

Torque on proton

 $\overline{\tau} = \overline{\mu}_{v} \times \overline{B}_{0}$ 

$$\frac{dt}{dt}\bar{\mu}_{p} = \gamma \cdot \left(\bar{\mu}_{p} \times \bar{B}\right)$$
$$\frac{d}{dt}\bar{\mu}_{p} = \gamma \cdot B_{0} \cdot \left(\bar{\mu}_{p} \times \hat{z}\right)$$

Angular momentum

 $\bar{\mu}_p = \gamma \cdot S_p$ 

Torque on proton

 $\overline{\tau} = \overline{\mu}_p \times B_0$ 

#### Proton in Magnetic Field

Solve equation of motion:





 $f_L$  : Larmor Frequency

### Remember This Equation!



Large magnets: power generation



#### Large magnets: power generation

Tiny magnets: Proton NMR detection















- Radio-Frequency (RF) signal
- Example frequency values:
  - f = 64 MHz at 1.5 T
  - f = 123.2MHz at 3 T
  - *f* = 300 *MHz* at 7 T
- No meaningful units





- Radio-Frequency (RF) signal
- Example frequency values:
  - f = 64 MHz at 1.5 T
  - f = 123.2MHz at 3 T
  - *f* = 300 *MHz* at 7 T
- No meaningful units





f(t)Signal frequency  $f_L = \gamma \cdot B$  f(t) f(t)Signal frequency  $f_L = \gamma \cdot B$  f(t) f(t) f(t) f(t) f(t) f(t) f(t)

Radio-Frequency (RF) signal

- Example frequency values:
  - f = 64 MHz at 1.5 T
  - f = 123.2 MHz at 3 T
  - *f* = 300 *MHz* at 7 T
- No meaningful units

Protons  $\longrightarrow$  Voltage  $\longrightarrow$  Data  $\longrightarrow$  Deep learning

# The NMR signal decays with time constant $T_2$ or $T_2^*$



- T<sub>2</sub>\* < T<sub>2</sub> due to inhomogeneous magnetic field
- Typical values T<sub>2</sub>
  - CSF ~ 1 s
  - Gray matter/white matter/blood ~ 100ms

# Magnetization recovers with time constant T1

 $M_z$ 



 $T_1 > T_2$ 

- Typical values T<sub>1</sub>
  - CSF ~ 3.5 s
  - Gray matter/white matter/blood ~ 1 s

Recovery time =  $T_1$ 

 $ar{\mu}_p$  points along  $ar{B}_0$  again

(1) Why are some regions bright, some dark?
*IE: What are we physically measuring? How do we make this measurement?*

(2) How do we form an image?
*IE: How do we get different mesurements from different spatial locations?*


#### MR Imaging is unlike most imaging

Digital Camera:



MRI:

#### 1 NMR detector coil



 $8 \cdot 10^6$  Voxels



#### **Preliminaries to Imaging**

- The MRI signal is a complex number
- The measured signal is the sum of the signals from every location in the sample
- MRI data is acquired over a period of time

#### The MRI signal is a complex number



#### The MRI signal is a complex number



## A measured MRI signal is the sum of signals from everywhere in space



## A measured MRI signal is the sum of signals from everywhere in space



#### MRI signals take time to measure

Measure precession over a "Readout" period T<sub>RO</sub>



#### MRI signals take time to measure

Measure precession over a "Readout" period T<sub>RO</sub>



Acquiring sufficient data to form an image takes many iterations ("shots"), spaced by the "Repetition Time" (TR)



### A Uniform B<sub>0</sub> Gives no Spatial Information\*



### A Uniform B<sub>0</sub> Gives no Spatial Information\*



### A Uniform B<sub>0</sub> Gives no Spatial Information\*



### MR Imaging uses inhomogeneous "Gradient Fields" for spatial encoding

Uniform magnetic field





### MR Imaging uses inhomogeneous "Gradient Fields" for spatial encoding

#### Uniform magnetic field

Field from "gradient" coils





 $G_{x}x \sim 10 \text{ mT}$ 



### MR Imaging uses inhomogeneous "Gradient Fields" for spatial encoding

### Uniform magnetic field

Field from "gradient" coils

#### Total field



Ζ













Measured Signal

 $S(t) = \iiint_{x,y,z} d^3x \cdot M_{xy}(x,y,z,t)$ 



Measured Signal

X

 $B_0 + G_x x$ 

$$S(t) = \iiint_{x,y,z} d^3x \cdot M_{xy}(x,y,z,t)$$

$$= \iiint_{x,y,z} d^3x \cdot M_0(x,y,z) \cdot e^{-j2\pi\gamma(B_0+G_x\cdot x)t}$$

$$= e^{-j2\pi\gamma B_0 t} \cdot \iiint_{x,y,z} d^3 x \cdot M_0(x,y,z) \cdot e^{-j2\pi\gamma G_x x t}$$

**Desired** Image

#### Frequency Encoding: A 1D Example

#### 1D Object



#### Frequency Encoding: A 1D Example

1D Object

Measured Signal



$$S(t) = \int_{x} dx \cdot S(x, t)$$

$$= \int_{\mathcal{X}} dx \cdot M_0(x) \cdot e^{j2\pi\gamma(B_0 + G_x x)t}$$

$$= e^{-j2\pi\gamma B_0 t} \cdot \int_{x} dx \cdot M_0(x) \cdot e^{j2\pi\gamma G_x \cdot x \cdot t}$$

Desired Image

#### Frequency Encoding: A 1D Example

1D Object

Measured Signal



$$S(t) = \int_{x} dx \cdot S(x, t)$$
  
=  $\int_{x} dx \cdot M_{0}(x) \cdot e^{j2\pi\gamma(B_{0}+G_{x}x)t}$   
Fourier Transform of  $M_{0}(x)$   
=  $e^{-j2\pi\gamma B_{0}t}$   
 $\int_{x} dx \cdot M_{0}(x) \cdot e^{j2\pi\gamma G_{x} \cdot x \cdot t}$ 

Desired Image

#### Reconstruct Image with Inverse Fourier Transform

1D Object



#### Reconstruct Image with Inverse Fourier Transform

1D Object

Measured Signal



Fourier Transform of  $M_0(x)$  $S(t) = e^{-j2\pi\gamma B_0 t} \cdot \int_x dx \cdot M_0(x) \cdot e^{j2\pi\gamma G_x \cdot x \cdot t}$ 

#### Reconstruct Image with Inverse Fourier Transform



Fourier Transform of 
$$M_0(x)$$
  
$$S(t) = e^{-j2\pi\gamma B_0 t} \cdot \int_x dx \cdot M_0(x) \cdot e^{j2\pi\gamma G_x \cdot x \cdot t}$$

## Frequency Encoding cannot encode along multiple dimensions\*



## Frequency Encoding cannot encode along multiple dimensions\*



# A second gradient field allows encoding along other directions



# A second gradient field allows encoding along other directions



#### "Phase Encode" gradients are turned on for short "blips"

Phase Encode gradient : Blipped Used prior to acquisition



#### "Phase Encode" gradients are turned on for short "blips"









Measured Signal

$$S(t) = \iiint_{x,y,z} d^3x \cdot M_{xy}(x,y,z,t)$$

Measured Signal

$$S(t) = \iiint_{x,y,z} d^3x \cdot M_{xy}(x,y,z,t)$$

$$= \iiint_{x,y,z} d^3x \cdot M_0(x,y,z) \cdot e^{-j2\pi\gamma(G_z z)t_{PE}} \cdot e^{-j2\pi\gamma B_0 t}$$

$$= e^{-j2\pi\gamma B_0 t} \cdot \iiint_{x,y,z} d^3 x \cdot M_0(x,y,z) \cdot e^{-j2\pi\gamma z \cdot G_z t_{PE}}$$
# Different z-locations acquire different phases due to the blip

Measured Signal

$$S(t) = \iiint_{x,y,z} d^3x \cdot M_{xy}(x,y,z,t)$$

$$= \iiint_{x,y,z} d^{3}x \cdot M_{0}(x,y,z) \cdot e^{-j2\pi\gamma(G_{z}z)t_{PE}} \cdot e^{-j2\pi\gamma B_{0}t}$$
  
NOT the Fourier Transform of  $M_{0}(z)$ 
$$= e^{-j2\pi\gamma B_{0}t} \cdot \iiint_{x,y,z} d^{3}x \cdot M_{0}(x,y,z) \cdot e^{-j2\pi\gamma z \cdot G_{z}t_{PE}}$$

# Vary Phase Encode blip size across multiple shots to acquire sufficient data

Phase Encode blip

**Acquired Signal** 



 $G_{z,1} = G \quad t$ 

$$S_{PE1}(t) = e^{-j2\pi\gamma B_0 t} \cdot \iiint_{x,y,z} d^3 x \cdot M_0(x,y,z) \cdot e^{-j2\pi\gamma z \cdot Gt_{PE}}$$

# Vary Phase Encode blip size across multiple shots to acquire sufficient data

Phase Encode blip

**Acquired Signal** 



# Vary Phase Encode blip size across multiple shots to acquire sufficient data

Phase Encode blip

**Acquired Signal** 



### Treating n<sub>PE</sub> as a variable turns the signal into a Fourier Transform

$$S(n_{PE},t) = e^{-j2\pi\gamma B_0 t} \cdot \iiint_{x,y,z} d^3 x \cdot M_0(x,y,z) \cdot e^{-j2\pi\gamma z \cdot n_{PE}Gt_{PE}}$$

### Treating n<sub>PE</sub> as a variable turns the signal into a Fourier Transform

$$S(n_{PE}, t) = e^{-j2\pi\gamma B_0 t} \cdot \iiint_{x,y,z} d^3x \cdot M_0(x, y, z) \cdot e^{-j2\pi\gamma z \cdot n_{PE}Gt_{PE}}$$
  
This IS the Fourier Transform of  $M_0(z)$ 

## Combining Phase Encoding with Frequency Encoding allows for 2D imaging

1D Phase Encoding

• Sample different n<sub>PE</sub> across different shots

$$S(n_{PE},t) = e^{-j2\pi\gamma B_0 t} \cdot \iiint_{x,y,z} d^3 x \cdot M_0(x,y,z) \cdot e^{-j2\pi\gamma z \cdot n_{PE}Gt_{PE}}$$

## Combining Phase Encoding with Frequency Encoding allows for 2D imaging

1D Phase Encoding

• Sample different  $n_{PE}$  across different shots

$$S(n_{PE},t) = e^{-j2\pi\gamma B_0 t} \cdot \iiint_{x,y,z} d^3 x \cdot M_0(x,y,z) \cdot e^{-j2\pi\gamma z \cdot n_{PE}Gt_{PE}}$$

1D Frequency Encoding

• Sample t at time points within one shot

$$S(t) = e^{-j2\pi\gamma B_0 t} \cdot \iiint_{x,y,z} d^3 x \cdot M_0(x,y,z) \cdot e^{j2\pi\gamma G_x \cdot x \cdot t}$$

## Combining Phase Encoding with Frequency Encoding allows for 2D imaging

1D Phase Encoding

Sample different n<sub>PE</sub> across different shots

$$S(n_{PE},t) = e^{-j2\pi\gamma B_0 t} \cdot \iiint_{x,y,z} d^3 x \cdot M_0(x,y,z) \cdot e^{-j2\pi\gamma z \cdot n_{PE}Gt_{PE}}$$

#### 1D Frequency Encoding

• Sample t at time points within one shot

$$S(t) = e^{-j2\pi\gamma B_0 t} \cdot \iiint_{x,y,z} d^3 x \cdot M_0(x,y,z) \cdot e^{j2\pi\gamma G_x \cdot x \cdot t}$$

#### Combine: 2D Encoding

- Sample different  $n_{PE}$  across different shots
- Sample t at time points within each shot

$$S(n_{PE},t) = e^{-j2\pi\gamma B_0 t} \cdot \iiint_{x,y,z} d^3 x \cdot M_0(x,y,z) \cdot e^{-j2\pi\gamma z \cdot n_{PE}Gt_{PE}} \cdot e^{j2\pi\gamma G_x \cdot x \cdot t}$$

## The 2D Fourier Transform reconstructs an image from 2D sampled data

 $|S(n_{PE},t)|^{\frac{1}{4}}$ 



## The 2D Fourier Transform reconstructs an image from 2D sampled data

 $|S(n_{PE},t)|^{\frac{1}{4}}$ 

Reconstructed Image















- T1
- Inflow effects













- T1
- Inflow effects



TSE

T2 Magnetization Transfer











- T1
- Inflow effects



#### TSE

- T2
- Magnetization Transfer



DTI

- Diffusion









- T1
- Inflow effects



TSE

- · T2
- Magnetization Transfer



DTI

- Diffusion



BOLD fMRI

- T2\* or T2







- T1
- Inflow effects



#### TSE

- T2
- Magnetization Transfer



DTI

- Diffusion



BOLD fMRI - T2\* or T2



DIR - T1





- T1
- Inflow effects



BOLD fMRI - T2\* or T2



#### TSE

- T2
- Magnetization Transfer







#### DTI

- Diffusion



SWI

- T2\*
- Magnetic Susceptibility



# $T_2$ Decay

- T<sub>2</sub> varies between tissues
  - Source of image contrast
  - " $T_2$ -weighted" images are 80% of all MRIs
- T<sub>2</sub> decay is irreversible









## The MRI signal decays with time



# $T_2^*$ : Signal can decay faster than $T_2$



# $T_2^*$ : Signal can decay faster than $T_2$



# $T_2^*$ Decay

- $T_2^*$  varies spatially and temporally
  - Source of image contrast
  - BOLD effect/fMRI\*
- Originates in magnetic materials
  - Air (sinus cavity)
  - Bone
  - Metal (stainless steel retainer).
  - Non-uniform magnet
- T<sub>2</sub><sup>\*</sup> decay is **reversible** 
  - Not due to random fluctuations



## 2. Signal Excitation+Detection

How do we excite spins?







# 2. Signal Excitation











Larmor Frequency: **Precession Period:** 

$$f_l = \gamma \cdot B_0 \approx 127.7 [MHz]$$
$$T = \frac{1}{f_l} = 7.8 [\text{ns}]$$



Larmor Frequency: Precession Period:

$$f_l = \gamma \cdot B_0 \approx 127.7[MHz]$$
$$T = \frac{1}{f_l} = 7.8[\text{ns}]$$



