Why and How: MRI Physics

Patrick McDaniel
10/10/19

MRI is a physical measurement with spatial information

(1) Why are some regions bright, some dark? IE: What are we physically measuring? How do we make this measurement?

MRI is a physical measurement with spatial information

(1) Why are some regions bright, some dark? IE: What are we physically measuring? How do we make this measurement?
(2) How do we form an image? IE: How do we get different mesurements from different spatial locations?

MRI is a physical measurement with spatial information

\Rightarrow
(1) Why are some regions bright, some dark? IE: What are we physically measuring? How do we make this measurement?
(2) How do we form an image? IE: How do we get different mesurements from different spatial locations?

MRI Measures Water*

- Most abundant substance in human body

Your Brain:

- Volume $\approx 1400 \mathrm{~mL}$
- $\sim 5 \cdot 10^{25} \times \mathrm{H}_{2} \mathrm{O}$
$1 \mathrm{~mm}^{3}$ of Brain:
- $\sim 3 \cdot 10^{19} \mathrm{xH}_{2} \mathrm{O}$

MRI Measures Water*

- Most abundant substance in human body
- Provides a wide range of diagnostic information Your Brain:

- Volume $\approx 1400 \mathrm{~mL}$
- $\sim 5 \cdot 10^{25} \times \mathrm{H}_{2} \mathrm{O}$
$1 \mathrm{~mm}^{3}$ of Brain:
- $\sim 3 \cdot 10^{19} \mathrm{xH}_{2} \mathrm{O}$
(N)MRI uses NMR to measure ${ }^{1} \mathrm{H}$ nuclei in water
(N)MR : (Nuclear) Magnetic Resonance
/
Measure Signal from
Atomic Nuclei (usually ${ }^{1} \mathrm{H}$)
(N)MRI uses NMR to measure ${ }^{1} \mathrm{H}$ nuclei in water
(N)MR : (Nuclear) Magnetic Resonance

Measure Magnetic Properties of ${ }^{1} \mathrm{H}$

(N)MRI uses NMR to measure

 ${ }^{1} \mathrm{H}$ nuclei in water(N)MR : (Nuclear) Magnetic Resonance

Measure Signal from
Atomic Nuclei (usually ${ }^{1} \mathrm{H}$)

Measure Magnetic Properties of ${ }^{1} \mathrm{H}$

Make Measurement by exploiting resonance phenomenon
(dependence on a specific frequency)

MRI uses NMR to measure ${ }^{1} \mathrm{H}$ nuclei in water

- ${ }^{1} \mathrm{H}$ gives strongest NMR signal among stable elements

Your Brain:

- Volume $\approx 1400 \mathrm{~mL}$
- $\sim 5 \cdot 10^{25} \times \mathrm{H}_{2} \mathrm{O}$
- $\sim \mathbf{1 0}^{\mathbf{2 6}} \mathrm{x}^{1} \mathrm{H}$ nuclei
$1 \mathrm{~mm}^{3}$ of Brain:
- $\sim 3 \cdot 10^{19} \mathrm{xH}_{2} \mathrm{O}$
- $\sim \mathbf{6} \cdot \mathbf{1 0}{ }^{19} \mathrm{x}^{1} \mathrm{H}$ nuclei
99.98\% of Hydrogen is
${ }^{1} \mathrm{H}$ isotope
${ }^{1} \mathrm{H}$ Nucleus $=$ Proton

NMR measures proton magnetism

- Proton Mass: $\boldsymbol{m}_{\boldsymbol{p}}=1.7 \cdot 10^{-27}[\mathrm{~kg}]$
- Proton Charge: $\boldsymbol{q}_{\boldsymbol{p}}=1.6 \cdot 10^{-19}[C] \quad \boldsymbol{q}_{\boldsymbol{p}}$

NMR measures proton magnetism

- Proton Mass: $\boldsymbol{m}_{\boldsymbol{p}}=1.7 \cdot 10^{-27}[\mathrm{~kg}]$ m_{p}
- Proton Charge: $\boldsymbol{q}_{\boldsymbol{p}}=1.6 \cdot 10^{-19}[C] \quad \boldsymbol{q}_{\boldsymbol{p}}$

Proton can be thought of as spinning*

- "Spin" Angular Momentum: $\bar{S}_{\boldsymbol{p}}=\hbar \cdot \sqrt{\frac{3}{4}}$
- Magnetic Dipole Moment: $\bar{\mu}_{p}=2 \pi \gamma_{p} \cdot \bar{S}_{p}$
"Gyromagnetic Ratio" $\gamma_{p}=42.58\left[\frac{M H z}{T}\right]$

Protons align with MRI magnetic field

- Magnetic Fields
- MRI magnetic field $\bar{B}_{0}: 1.5 \mathrm{~T}-7 \mathrm{~T}$
- Rare-earth magnet : 1 T
- Earth's field : $50 \mu \mathrm{~T}$

Protons align with MRI magnetic field

- Magnetic Fields
- MRI magnetic field $\bar{B}_{0}: 1.5 \mathrm{~T}-7 \mathrm{~T}$
- Rare-earth magnet : 1 T
- Earth's field : $50 \mu \mathrm{~T}$

Protons align with MRI magnetic field

- Magnetic Fields
- MRI magnetic field $\bar{B}_{0}: 1.5 \mathrm{~T}-7 \mathrm{~T}$
- Rare-earth magnet : 1 T
- Earth's field : $50 \mu \mathrm{~T}$
- Weak alignment due to random thermal fluctuations

$$
\bar{M}_{0}=\sum \bar{\mu}_{i} \sim \frac{\gamma^{2} h^{2}}{4 k_{b} T} \cdot \bar{B}_{0}
$$

$\sim 10^{-5}$ of maximum available magnetization

NMR measurements involve

 "excitation" and "detection"Excitation

- 90° Excitation

rotates "spin"
orientation

NMR measurements involve

 "excitation" and "detection"Excitation

- 90° Excitation

orientation

- Proton precesses around \bar{B}_{0}
- Acquire signal

NMR measurements involve

 "excitation" and "detection"

A proton in a magnetic field precesses like a gyroscope

Gyroscope

Wheel Spinning

- Angular velocity ω

Angular momentum

- $\bar{L}=I \cdot \omega \cdot \hat{R}$

Gravitational Force

- $\bar{F}=M \cdot g \cdot(-\hat{z})$

Torque on wheel

- $\bar{\tau}=\bar{R} \times \bar{F}$

A proton in a magnetic field precesses like a gyroscope

Gyroscope

Wheel Spinning

- Angular velocity ω

Angular momentum

- $\bar{L}=I \cdot \omega \cdot \hat{R}$

Gravitational Force

- $\bar{F}=M \cdot g \cdot(-\hat{z})$

Torque on wheel

- $\bar{\tau}=\bar{R} \times \bar{F}$

Solve equation of motion:

$$
\frac{d}{d t} \bar{L}=\bar{\tau}
$$

$$
\frac{d}{d t} \hat{R}=\frac{-M g R}{I \omega} \cdot(\hat{R} \times \hat{z})
$$

Precession with frequency Ω

- $\Omega=\frac{M \cdot g \cdot R}{I \cdot \omega}$

A proton in a magnetic field precesses like a gyroscope

Proton in
Magnetic Field

A proton in a magnetic field precesses like a gyroscope

Proton in

Magnetic Field

Solve equation of motion:

Angular momentum

$$
\begin{array}{ll}
\text { - } \bar{L}=\bar{S}_{p} & \frac{d}{d t} \bar{L}=\bar{\tau} \\
& \bar{\mu}_{p}=\gamma \cdot \bar{S}_{p} \\
& \text { "Bloch Equation"" } \\
& \frac{d}{d t} \bar{\mu}_{p}=\gamma \cdot\left(\bar{\mu}_{p} \times \bar{B}\right) \\
\text { Torque on proton } & \frac{d}{d t} \bar{\mu}_{p}=\gamma \cdot B_{0} \cdot\left(\bar{\mu}_{p}\right)
\end{array}
$$

A proton in a magnetic field precesses like a gyroscope

Proton in
 Magnetic Field

Solve equation of motion:

Angular momentum

- $\bar{L}=\bar{S}_{p}$
- $\bar{\mu}_{p}=\gamma \cdot \bar{S}_{p}$
"Bloch Equation"

$$
\begin{gathered}
\frac{d}{d t} \bar{L}=\bar{\tau} \\
\text { Equation" } \frac{d}{d t} \bar{\mu}_{p}=\gamma \cdot\left(\bar{\mu}_{p} \times \bar{B}\right) \\
\frac{d}{d t} \bar{\mu}_{p}=\gamma \cdot B_{0} \cdot\left(\bar{\mu}_{p} \times \hat{z}\right) \\
\bar{\mu}_{p}(t)=\mu_{p} \cdot(\cos (\Omega t) \hat{x}-\sin (\Omega t) \hat{y}) \\
\uparrow
\end{gathered} \begin{gathered}
\text { Precession with frequency } \Omega \\
\text { - } \Omega=2 \pi \gamma \cdot B_{0} \equiv 2 \pi f_{L} \\
\text { - } f_{L}: \text { Larmor Frequency }
\end{gathered}
$$

Torque on proton

- $\overline{\boldsymbol{\tau}}=\overline{\boldsymbol{\mu}}_{\boldsymbol{p}} \times \overline{\boldsymbol{B}}_{0}$

Remember This Equation!

$$
\begin{aligned}
& f_{L}=\gamma \cdot B \\
& \begin{array}{c}
\\
\longrightarrow \text { Gyromagnetic Ratio (Constant) }
\end{array} \\
& \text { - } \gamma=42.576 \cdot 10^{6} \mathrm{MHz} / T \\
& \longrightarrow \text { Larmor Frequency } \\
& \text { - Proton precession frequency }
\end{aligned}
$$

Rotating magnets generate voltage in an electrical coil

Large magnets: power generation

Rotating magnets generate voltage in an electrical coil

Large magnets: power generation

Tiny magnets: Proton NMR detection

Rotating magnets generate voltage in an electrical coil

Rotating magnets generate voltage in an electrical coil

Electronic circuits sample coil voltage to acquire data

Electronic circuits sample coil voltage to acquire data

Electronic circuits sample coil voltage to acquire data

Protons \longrightarrow Voltage \longrightarrow Data

Electronic circuits sample coil voltage to acquire data

Protons \longrightarrow Voltage \longrightarrow Data \longrightarrow Deep learning

The NMR signal decays with time constant T_{2} or $\mathrm{T}_{2}{ }^{*}$

- $T_{2}{ }^{*}<T_{2}$ due to inhomogeneous magnetic field
- Typical values $-\mathrm{T}_{2}$
- CSF ~ 1 s
- Gray matter/white matter/blood ~ 100ms

Magnetization recovers with time constant T1

$\bar{\mu}_{p}$ points along \bar{B}_{0} again

- $\mathrm{T}_{1}>\mathrm{T}_{2}$
- Typical values $-\mathrm{T}_{1}$
- CSF ~ 3.5 s
- Gray matter/white matter/blood ~ 1 s

MRI is a physical measurement with spatial information

(1) Why are some regions bright, some dark? IE: What are we physically measuring? How do we make this measurement?
(2) How do we form an image? IE: How do we get different mesurements from different spatial locations?

MR Imaging is unlike most imaging

Digital Camera:

MRI:

Preliminaries to Imaging

- The MRI signal is a complex number
- The measured signal is the sum of the signals from every location in the sample
- MRI data is acquired over a period of time

The MRI signal is a complex number

The MRI signal is a complex number

Magnitude Phase

A measured MRI signal is the sum of signals from everywhere in space

A measured MRI signal is the sum of signals from everywhere in space

MRI signals take time to measure

Measure precession over a "Readout" period $T_{\text {RO }}$

MRI signals take time to measure

Measure precession over a "Readout" period $T_{R O}$

Acquiring sufficient data to form an image takes many iterations ("shots"), spaced by the "Repetition Time" (TR)

A Uniform Bo Gives no Spatial Information*

A Uniform Bo Gives no Spatial Information*

A Uniform B_{0} Gives no Spatial Information*

MR Imaging uses inhomogeneous "Gradient Fields" for spatial encoding Uniform magnetic field

$B_{0} \sim 3 \mathrm{~T}$

MR Imaging uses inhomogeneous "Gradient Fields" for spatial encoding

Uniform magnetic field

$B_{0} \sim 3$ T
$G_{x} x \sim 10 \mathrm{mT}$

$\rightarrow 2$

MR Imaging uses inhomogeneous "Gradient Fields" for spatial encoding

Uniform magnetic field

$B_{0} \sim 3 \mathrm{~T}$
$G_{x} x \sim 10 \mathrm{mT}$
$B_{0}+G_{x} x$
"gradient" coils Total field $=\uparrow \uparrow \uparrow \uparrow \uparrow \dagger$
"gradient" coils Total field
Field from

.

"Frequency Encoding" allows spatial encoding in one dimension

"Frequency Encoding" allows spatial encoding in one dimension

"Frequency Encoding" allows spatial encoding in one dimension

"Frequency Encoding" allows spatial encoding in one dimension

Measured Signal
$\overbrace{S(t)}=\iiint_{x, y, z} d^{3} x \cdot M_{x y}(x, y, z, t)$

"Frequency Encoding" allows spatial encoding in one dimension

Measured Signal

$$
\begin{aligned}
\overbrace{S(t)} & =\iiint_{x, y, z} d^{3} x \cdot M_{x y}(x, y, z, t) \\
& =\iiint_{x, y, z} d^{3} x \cdot M_{0}(x, y, z) \cdot e^{-j 2 \pi \gamma\left(B_{0}+G_{x} \cdot x\right) t} \\
& =e^{-j 2 \pi \gamma B_{0} t} \cdot \iiint_{x, y, z} d^{3} x \cdot \underbrace{M_{0}(x, y, z)} \cdot e^{-j 2 \pi \gamma G_{x} x t}
\end{aligned}
$$

Frequency Encoding: A 1D Example

1D Object

Frequency Encoding: A 1D Example

Measured Signal

$$
\begin{aligned}
& \overbrace{S(t)=} d x \cdot S(x, t) \\
& \quad=\int_{x} d x \cdot M_{0}(x) \cdot e^{j 2 \pi \gamma\left(B_{0}+G_{x} x\right) t} \\
& =e^{-j 2 \pi \gamma B_{0} t} \cdot \int_{x} d x \cdot M_{0}(x) \cdot e^{j 2 \pi \gamma G_{x} \cdot x \cdot t}
\end{aligned}
$$

Desired Image

Frequency Encoding: A 1D Example

Measured Signal

$$
\begin{aligned}
& \overbrace{S(t)}= \int_{x} d x \cdot S(x, t) \\
&=\int_{x} d x \cdot M_{0}(x) \cdot e^{j 2 \pi \gamma\left(B_{0}+G_{x} x\right) t} \\
&=e^{-j 2 \pi \gamma B_{0} t} \underbrace{\int_{x}}_{\text {Fourier Transform of } M_{0}(x)} d x \cdot M_{0}(x) \cdot e^{j 2 \pi \gamma G_{x} \cdot x \cdot t}
\end{aligned}
$$

Desired Image

Reconstruct Image with Inverse Fourier Transform

1D Object

Reconstruct Image with Inverse Fourier Transform

$$
S(t)=e^{-j 2 \pi \gamma B_{0} t} \int_{1} d x \cdot M_{0}(x) \cdot e^{j 2 \pi \gamma G_{x} \cdot x \cdot t}
$$

Reconstruct Image with Inverse Fourier Transform

$$
S(t)=e^{-j 2 \pi \gamma B_{0} t} \stackrel{\substack{\text { Fourier Transform of } M_{0}(x) \\ \int_{1}}}{ } d x \cdot M_{0}(x) \cdot e^{j 2 \pi \gamma G_{x} \cdot x \cdot t}
$$

Frequency Encoding cannot encode along multiple dimensions*

Frequency Encoding cannot encode along multiple dimensions*

A second gradient field allows encoding along other directions

A second gradient field allows encoding along other directions

Uniform $\quad G_{z}$ gradient magnetic field field

"Phase Encode" gradients are turned on for short "blips"

"Phase Encode" gradients are turned on for short "blips"

Different z-locations acquire different phases due to the blip

- G_{z} is Off
- P2 and P3 have the same f_{L}
$M(t)=$
$M_{0} \cdot e^{-j 2 \pi f_{L} \cdot 0}$
$M_{0} \cdot e^{-j 2 \pi f_{L} \cdot 0}$

Different z-locations acquire different phases due to the blip

- G_{z} is On
- P2 and P3 have different f_{L}

Different z-locations acquire different phases due to the blip

- G_{z} is Off
- P2 and P3 have the same f_{L}

Different
Signal Phase

$$
\varphi_{P E}=2 \pi \gamma Z \cdot G_{z} t_{P E}
$$

$$
M_{0} \cdot e^{-j 2 \pi \gamma\left(G_{Z} z_{2}\right) t_{P E}} \cdot e^{-j 2 \pi f_{L} t}
$$

Different z-locations acquire different phases due to the blip

Measured Signal

$$
S(t)=\iiint_{x, y, z} d^{3} x \cdot M_{x y}(x, y, z, t)
$$

Different z-locations acquire different phases due to the blip

Measured Signal

$$
\begin{aligned}
& S(t)=\iiint_{x, y, z} d^{3} x \cdot M_{x y}(x, y, z, t) \\
& =\iiint_{x, y, z} d^{3} x \cdot M_{0}(x, y, z) \cdot e^{-j 2 \pi \gamma\left(G_{z} z\right) t_{P E}} \cdot e^{-j 2 \pi \gamma B_{0} t} \\
& =e^{-j 2 \pi \gamma B_{0} t} \cdot \iiint_{x, y, z} d^{3} x \cdot M_{0}(x, y, z) \cdot e^{-j 2 \pi \gamma z \cdot G_{z} t_{P E}}
\end{aligned}
$$

Different z-locations acquire different phases due to the blip

Measured Signal

$$
\begin{aligned}
& S(t)=\iiint_{x, y, z} d^{3} x \cdot M_{x y}(x, y, z, t) \\
& =\iiint_{x, y, z} d^{3} x \cdot M_{0}(x, y, z) \cdot e^{-j 2 \pi \gamma\left(G_{z} z\right) t_{P E}} \cdot e^{-j 2 \pi \gamma B_{0} t} \\
& \text { NOT the Fourier Transform of } M_{0}(z) \\
& =e^{-j 2 \pi \gamma B_{0} t} \begin{array}{l}
1 \\
\vdots \\
1
\end{array} \iint_{x, y, z} d^{3} x \cdot M_{0}(x, y, z) \cdot e^{-j 2 \pi \gamma z \cdot G_{z} t_{P E}}
\end{aligned}
$$

Vary Phase Encode blip size across multiple shots to acquire sufficient data

Phase Encode blip

Acquired Signal

Shot \#1 :

$$
G_{z, 1}=G
$$

$$
S_{P E 1}(t)=e^{-j 2 \pi \gamma B_{0} t} \cdot \iiint_{x, y, z} d^{3} x \cdot M_{0}(x, y, z) \cdot e^{-j 2 \pi \gamma z \cdot G t_{P E}}
$$

Vary Phase Encode blip size across multiple shots to acquire sufficient data

Acquired Signal

$$
S_{P E 1}(t)=e^{-j 2 \pi \gamma B_{0} t} \cdot \iiint_{x, y, z} d^{3} x \cdot M_{0}(x, y, z) \cdot e^{-j 2 \pi \gamma z \cdot G t_{P E}}
$$

$$
S_{P E 2}(t)=e^{-j 2 \pi \gamma B_{0} t} \cdot \iiint_{x, y, z} d^{3} x \cdot M_{0}(x, y, z) \cdot e^{-j 2 \pi \gamma z \cdot 2 G t_{P E}}
$$

Vary Phase Encode blip size across multiple shots to acquire sufficient data

Phase Encode blip
Acquired Signal

$$
S_{P E 1}(t)=e^{-j 2 \pi \gamma B_{0} t} \cdot \iiint_{x, y, z} d^{3} x \cdot M_{0}(x, y, z) \cdot e^{-j 2 \pi \gamma z \cdot G t_{P E}}
$$

$$
G_{z, 2}=2 G
$$

$$
S_{P E 2}(t)=e^{-j 2 \pi \gamma B_{0} t} \cdot \iiint_{x, y, z} d^{3} x \cdot M_{0}(x, y, z) \cdot e^{-j 2 \pi \gamma z \cdot 2 G t_{P E}}
$$

Shot \#1 :

$$
\underset{\sim}{ } G_{z, 1}=G \quad t
$$

Shot \#2 :
:

Shot \#n $\boldsymbol{n}_{\mathbf{P E}}: \uparrow \square \begin{aligned} & \boldsymbol{G}_{\boldsymbol{z}, \boldsymbol{N}}=\boldsymbol{n}_{\mathbf{P E}} \cdot \boldsymbol{G} \\ & S_{\text {PEN }}(t)=e^{-j 2 \pi \gamma B_{0} t} \cdot \iiint_{x, y, z} d^{3} x \cdot M_{0}(x, y, z) \cdot e^{-j 2 \pi \gamma z \cdot n_{P E} G t_{P E}}\end{aligned}$

Treating $n_{P E}$ as a variable turns the signal into a Fourier Transform

$$
S\left(n_{P E}, t\right)=e^{-j 2 \pi \gamma B_{0} t} \cdot \iiint_{x, y, z} d^{3} x \cdot M_{0}(x, y, z) \cdot e^{-j 2 \pi \gamma z \cdot n_{P E} G t_{P E}}
$$

Treating $n_{P E}$ as a variable turns the signal into a Fourier Transform

$$
S\left(n_{P E}, t\right)=e^{-j 2 \pi \gamma B_{0} t} \stackrel{1}{1} \iiint_{x, y, z} d^{3} x \cdot M_{0}(x, y, z) \cdot e^{-j 2 \pi \gamma z \cdot n_{P E} G t_{P E}}
$$

This IS the Fourier Transform of $M_{0}(z)$

Combining Phase Encoding with Frequency Encoding allows for 2D imaging

1D Phase Encoding

- Sample different $n_{P E}$ across different shots

$$
S\left(n_{P E}, t\right)=e^{-j 2 \pi \gamma B_{0} t} \cdot \iiint_{x, y, z} d^{3} x \cdot M_{0}(x, y, z) \cdot e^{-j 2 \pi \gamma z \cdot n_{P E} G t_{P E}}
$$

Combining Phase Encoding with Frequency Encoding allows for 2D imaging

1D Phase Encoding

- Sample different $n_{P E}$ across different shots

$$
S\left(n_{P E}, t\right)=e^{-j 2 \pi \gamma B_{0} t} \cdot \iiint_{x, y, z} d^{3} x \cdot M_{0}(x, y, z) \cdot e^{-j 2 \pi \gamma z \cdot n_{P E} G t_{P E}}
$$

1D Frequency Encoding

- Sample t at time points within one shot

$$
S(t)=e^{-j 2 \pi \gamma B_{0} t} \cdot \iiint_{x, y, z} d^{3} x \cdot M_{0}(x, y, z) \cdot e^{j 2 \pi \gamma G_{x} \cdot x \cdot t}
$$

Combining Phase Encoding with Frequency Encoding allows for 2D imaging

1D Phase Encoding

- Sample different $n_{P E}$ across different shots

$$
S\left(n_{P E}, t\right)=e^{-j 2 \pi \gamma B_{0} t} \cdot \iiint_{x, y, z} d^{3} x \cdot M_{0}(x, y, z) \cdot e^{-j 2 \pi \gamma z \cdot n_{P E} G t_{P E}}
$$

1D Frequency Encoding

- Sample t at time points within one shot

$$
S(t)=e^{-j 2 \pi \gamma B_{0} t} \cdot \iiint_{x, y, z} d^{3} x \cdot M_{0}(x, y, z) \cdot e^{j 2 \pi \gamma G_{x} \cdot x \cdot t}
$$

Combine: 2D Encoding

- Sample different $n_{P E}$ across different shots
- Sample t at time points within each shot

$$
S\left(n_{P E}, t\right)=e^{-j 2 \pi \gamma B_{0} t} \cdot \iiint_{x, y, z} d^{3} x \cdot M_{0}(x, y, z) \cdot e^{-j 2 \pi \gamma z \cdot n_{P E} G t_{P E}} \cdot e^{j 2 \pi \gamma G_{x} \cdot x \cdot t}
$$

The 2D Fourier Transform reconstructs an image from 2D sampled data

$$
\left|S\left(n_{P E}, t\right)\right|^{\frac{1}{4}}
$$

The 2D Fourier Transform reconstructs an

 image from 2D sampled data$$
\left.\mid S\left(n_{P E}, t\right)\right)^{\frac{1}{4}}
$$

Reconstructed Image

MPRAGE

- T1
- Inflow effects

MPRAGE

- T1
- Inflow effects

TSE

- T2
- Magnetization Transfer

MPRAGE

- T1
- Inflow effects

TSE

- T2
- Magnetization Transfer

DTI

- Diffusion

MPRAGE

- T1
- Inflow effects

BOLD fMRI

- T2* or T2

TSE

- T2
- Magnetization Transfer

DTI

- Diffusion

MPRAGE

- T1
- Inflow effects

BOLD fMRI

- T2* or T2

TSE

- T2
- Magnetization Transfer

DIR

- T1

DTI

- Diffusion

MPRAGE

- T1
- Inflow effects

BOLD fMRI

- T2* or T2

TSE

- T2
- Magnetization Transfer

DIR

- T1

DTI

- Diffusion

SWI

- T2*
- Magnetic Susceptibility

T_{2} Decay

- T_{2} varies between tissues
- Source of image contrast
- " T_{2}-weighted" images are 80\% of all MRIs
- T_{2} decay is irreversible

The MRI signal decays with time

Protons precessing together

The MRI signal decays with time

Random fluctuations cause misalignment -"dephasing"

The MRI signal decays with time

No more coherent proton alignment

Signal has completely decayed

The MRI signal decays with time

No more coherent proton alignment

Voltage
(Signal)

$$
s(t)=M_{0} \cdot e^{-\frac{t}{T_{2}}}
$$

$$
L_{\text {" }} T_{2} \text { Decay" }
$$

Signal has completely decayed
T_{2}^{*} : Signal can decay faster than T_{2}

T_{2}^{*} : Signal can decay faster than T_{2}

$$
s(t)=M_{0} \cdot e^{-\frac{t}{T_{2}^{*}}}
$$

T_{2}^{*} Decay

- T_{2}^{*} varies spatially and temporally
- Source of image contrast
- BOLD effect/fMRI*
- Originates in magnetic materials
- Air (sinus cavity)
- Bone
- Metal (stainless steel retainer).
- Non-uniform magnet
- T_{2}^{*} decay is reversible
- Not due to random fluctuations

2. Signal Excitation+Detection

How do we excite spins?

How do we detect precessing spins?

2. Signal Excitation

2. Signal Excitation

 $\bar{B}_{0} \approx 3[T] \prod_{\bar{B}_{1} \approx 30[\mu T]}^{\bar{M}} \uparrow$
2. Signal Excitation

 $\bar{B}_{0} \approx 3[T] \hat{E}_{\hat{B}_{1} * 30[\mu T]}^{\hat{B}_{n e r}}$
2. Signal Excitation

Larmor Frequency: $\quad f_{l}=\gamma \cdot B_{0} \approx 127.7[\mathrm{MHz}]$
Precession Period: $\quad T=\frac{1}{f_{l}}=7.8[\mathrm{~ns}]$

2. Signal Excitation

Larmor Frequency: $\quad f_{l}=\gamma \cdot B_{0} \approx 127.7[\mathrm{MHz}]$
Precession Period: $\quad T=\frac{1}{f_{l}}=7.8[\mathrm{~ns}]$

2. Signal Excitation

2. Signal Excitation

$$
\bar{B}_{0} \approx 3[T]{\underset{S}{B_{n}}}_{\bar{B}_{n e t}}^{\sim} \sim 30[\mu T]
$$

$$
\text { After } t=\frac{T}{2}
$$

Flip B1

- Oscillating \bar{B}_{1} at Larmor Frequency
- Tipped \bar{M} away from \bar{B}_{0}

Larmor Frequency: $\quad f_{l}=\gamma \cdot B_{0} \approx 127.7[\mathrm{MHz}]$
Precession Period: $\quad T=\frac{1}{f_{l}}=7.8[\mathrm{~ns}]$

