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1. MEG and EEG: Historical and Technical Background
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« 1780: Galvani’s demonstration of muscle-nerve
interactions

» 1870: Hitzig and Fritsch stimulated cortex in a dog
and found that the contralateral muscles moved

« 1873: David Ferrier built on Hitzig-Fritsch’s work
and topographically mapped motor function in
various animals

Understandable that electrical stimulation of the
brain produces a response, but can a spontaneous
brain activity be recorded?
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« 1875: Richard Caton did the first invasive recordings of
brain activity and used a galvanometer to detect electrical
signals in rabbit and monkey cortex

« 1929: Hans Berger recorded the first human EEG by PANA NN N, N\ p Ao s
measuring electric potentials between two electrodes
placed at the scalp.

« 1934: Edgar Adrian reproduced Berger’s findings. AMAAAMAAAAAMMMAAAAAMAAAAAMAMAL e
HG:R;‘Z: [f 1 e AWV VAMA AR AN AN \MAA A A A,
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In Row A, the
subject started with
his eyes open and
then closed them,
producing larger . l-——d_A/ «SC C o
brain waves. In -
Row B, the eyes
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1935-36: The first unambiguous sensory (auditory) evoked

potentials” were recorded (in Boston) by Hallowell and Pauline
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Much excitement and research focused on identifying various cognitive ERP components and developing methods
recording and analyzing the ERPs in cognitive experiments.

Various auditory, visual, somatosensory evoked potentials have been identified

Specific peaks/troughs have been labeled as either P or N followed the time in milliseconds when they are seen.

CONDITIONED

Note that these are single trial data - no averaging across trials {
1962 (Galambos, Sheatz)!
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MONKEY PAV 13 6-14-61

FiG. 1. Click-evoked responses averaged by computer. Bipolar
recording from cortex of inferior bank of superior temporal gyrus
in monkey.
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« Back in the mid 60s, David Cohen started constructing an
elaborate 5-layer magnetically shielded room. First started
recording the heart signal (MCG) and then signals (alpha rhythms) |,.... . wews s e s o s

from the brain. Early measurements were done using a copper
induction coill.

First brain MEG measurements required thousands of averages with concurrent phase-locked EEG measurements.

SCIENCE

« Late 1960s: Jim Zimmerman developed the first practical SQUIDs
for biomagnetism B, i o Mt P

SQUID = Superconducting Quantum Interference Devices

By 1971, David Cohen and Jim Zimmerman were able to record
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presynaptic (fast) action potentials
\_-Y 1 ms
>
synagse g
o
postsynaptic
10 ms
P =
_/f\]' 3
<
(slow)
excitatory or
inhibitory
postsynaptic
potentials

(EPSP, IPSP)
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Based on
0 214120 EEG: Basic Principles, Clinical Applications and Related Fields
by Niedermeyer & Lopes da Silva
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Note: Current sources and sinks are defined wrt a viewer in the extracellular space
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current source

([

Separation of charge over distance
Unit: nA.m

Fundamental to measuring
and recording activity
with EEG and MEG

Note that current dipole # magnetic dipole

Current dipoles

current sink

« magnetic dipoles are equivalent to a small current loop
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presynaptic (fast) action potentials
synagse
postsynaptic “Dipole”
Bpgp ~ 1/r?
“Quadrupole” (slow)
B.. ~1/r excitatory or
AP inhibitory
postsynaptic
potentials

(EPSP, IPSP)
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Canter - Neuron populations
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« EEG: 0.1-100 pV

 MEG: 1fT -3 pT
Earth’s magnetic field: 10-° Tesla (~ pT)
Fridge magnets: ~ mT
MRI scanners: ~ 3 Tesla

» Current density = Current dipole moment density
Current density in brain tissue is constant across species and across brain regions = 1 nA.m/mm?2

Invariance in current dipole moment density across brain structures and species: Physiological constraint for neuroimaging, Murakami & Okada, Neuroimage 2015

» Dipole moment for measurable cortical generators in humans Q = 10 nA.m
(Hamalainen 1993)

For a single pyramidal neuron, g = 0.2 pA.m
(Murakami & Okada 2006)

~50,000 synchronously firing cortical neurons generate a detectable signal
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Practicalities of recording EEG
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« MEG measures magnetic fields with highly sophisticated sensors
« SQUID = Superconducting Quantum Interference Devices

« SQUID-based MEG sensors need to be shielded, cooled and tuned
«  SQUID noise ~ 2.5 fT/NHz

* |Instrumentation is expensive
« Magnetic fields can originate from:

« Magnetic materials (let’s keep these out of the MEG)

Electric currents (neuronal currents)
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Pickup coil Input coil

O

Since magnetic fields are so small, amplify the field with a flux transformer

Whole thing is made of a superconducting metal
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SQUID

N /
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« Sometimes magnetic material is accidentally brought close to the SQUID
 The SQUID gets a “flux trap” (MEG jargon!)

 Need to transiently heat the sensor above the critical temp by applying
an electric heater pulse

« “Heating the sensor” is a super-common first step prior to MEG
acquisition.
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magnetometer
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magnetometer
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radial tilted

MEG step= 200fT = 200fT MEG step = 20.0fT

EEG

radial

Slide courtesy

M. Hamalainen
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Homogeneous

Slide courtesy

M. Hamalainen

Note: MEG remains unchanged
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4. Mininum norm source estimation
from EEG and MEG measurements
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M=GX+E
NTEEG data (measurements)

# Sensors

0 100 200 300 4
Time (ms)

times
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Gain matrix (leadfield)

# Sensors

#£ source
“forward” field for a single dipole
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M=GX + E

Source amplitudes (unknown)

F

#£ sources

\ 4
amplitude (nA.m)

0 100 200 300
Time (ms)

times
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We have a grid of dipoles on the surface or in a volume

Underdetermined problem! [lsources > Nmeasurements

Need to find an optimal solution given the data

Find the current distribution with the smallest overall amplitude that
can explain the measurements (in the L2 norm sense)

M=GX + E
X* = arg min||M — GX||* + \||X]|?

a1 214120 Hamalainen et al 1994
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N100Om

T T T T 1
0 200 400 600 800 ms

= auditory
audiovisual congruent
audiovisual incongruent
visual
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MEEG Empty Room
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* Freesurfer: https://surfer.nmr.mgh.harvard.edu
 MNE-Python: https://mne.tools/stable/index.html

« MNE-C

- MNE-MATLAB : h

MEG + EEG ANALYSIS & VISUALIZATION

« EEGLab

* FieldTrip
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* Run Freesurfer recon-all

« White matter, gray matter, inflated surfaces
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« BEM surfaces: triangulations of the interfaces
between the different tissues

 Head geometry, conductivities
* Independent of MEG data/head pos
 Needed for forward computation
 Use command line tools:
* mne_watershed bem
* mne_flash bem
* Or use mne Python:
* mne.bem.make watershed bem
* mne.bem.make flash bem

* mne.viz.plot bem

47 2/14/20



Athinoula A.

caer- Co-Register the MRI head model to the head
S position recorded during the MEG

 Mne python: mne.gui.coregistration or
« Command line: mne coreg

° mne_analyze

« This will position the head and the MEEG
sensors in a common coordinate system

e “—trans.fif” file
(coordinate transformation)
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Surface Source Space

» Define the position and orientation of the candidate
source locations

» Surface-based source space
candidate dipoles are confined to a surface

mne.setup source_space

* Volume source space —
mne. setup_volume_source_space

Volume Source Space
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 Also called the gain matrix or the leadfield matrix

* mne.make forward solution

* Noise covariance matrix can be obtained either from the empty room or from
the baseline period of the data

* mne.compute_ raw covariance
* mne.compute_ covariance

« Should | regularize the noise covariance matrix?
The estimated covariance might be unstable and induce correlations
between the estimates

° mne.minimum_ norm.inverse_operator
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« Apply the inverse operator to the MEEG data

°* mne.minimum norm.apply inverse

* Returns a source estimate (either a surface source estimate or a volume
source estimate)

time=0.100s
5.02 7.39 9.76 12.1 14.5 16.9 19.3 21.6
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Artifacts

blinking

eye
movements

muscular
tension

respiration

ballisto-
cardiogram

ECG

Artifact Removal Methods

Signal Space Projection (SSP)
* Independent Component Analysis (ICA)

« Don't forget that ICA assumes that the sources are
statistically independent
Only independence is at work
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Time (Good temporal resolution!)
Event Related Potentials and Fields
Epoched Data

Source Estimates
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To Summarize

EEG detects electric fields due to neuronal activity, MEG detects the corresponding magnetic field

"

Goal of the neuromagnetic inverse problem is to estimate the current source density underlying the measured MEEG
data

Current density in the cortex is approximately a constant: 1 nA.m/mmz2 (Murakami & Okada 2016)

(Helmholtz 1953): Even if you know the magnetic/electric potential precisely everywhere outside the head, you
cannot recover the primary current distribution uniquely

Prerequisite for most localization studies is the solution of the forward problem

There are ambiguities in the solution of the inverse problem - the results depend crucially on the assumptions of the
source modeling

Size of the activated region in the source images need not related to the actual dimensions of the source but rather
reflects an intrinsic limitation of the imaging method.

“Different source estimation methods give converging evidence when interpreted correctly” - M. Hamalainen
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