

Adrian KC Lee ScD Research Fellow, MGH

Martinos Center November 6, 2008

Format of tutorial

- **▶** Why do we care about Linear Algebra?
- What is a vector?
 - Geometric interpretation.
 - ▶ Vector operations, "Norms," Projections.
 - ▶ Independence, Basis set.
- **▶** What is a matrix?
 - Determinants, Inverse.
 - ▶ Under-determined solution / null-space / MEG.
 - ▶ Over-determined solution / LMMSE / fMRI.

Why Linear Algebra?

- ➤ What is linear algebra?
 - ▶ Study of vectors, systems of linear equations...
- ➤ Who cares?
 - Extensive applications in neurosciences.
 - Nice geometric interpretation of complex mathematical concepts, e.g., spectral coherence.
- → How do we use MATLAB?
 - ▶ MATrix LABoratory: fundamental knowledge in linear algebra matters!!

What is a vector?

- ▶ Physical interpretation: a geometric entity characterized by a magnitude and a direction.
- **→** Commonly encountered in Euclidean space.
 - ▶ In MEG: tangential and normal decomposition.

"Norm"

$$\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2}$$

$$\mathbf{v} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$$

$$= \left(|x_1|^p + |x_2|^p + |x_3|^p + \dots + |x_n|^p \right)^{1/p}$$

$$\|\mathbf{v}\| = \sqrt{(-3)^2 + (4)^2} = 5 \qquad \|\mathbf{x}\|_{\infty} = \max \left\{ |x_1|, |x_2|, \dots, |x_p| \right\}$$

- → "Norm" is a measure of distance of a vector.
 - ▶ Default norm: L2-norm
 - ▶ Other norms: L1-norm; L∞-norm.

Scalar Multiplication / Unit Vector

$$\mathbf{v} = \begin{pmatrix} -3\\4 \end{pmatrix} \quad \frac{1}{2}\mathbf{v} \qquad \qquad \hat{\mathbf{v}} = \frac{\mathbf{v}}{\|\mathbf{v}\|} \qquad \|\mathbf{v}\| = \sqrt{(-3)^2 + (4)^2} = 5$$

$$\frac{1}{2}\mathbf{v} = \frac{1}{2}\begin{pmatrix} -3\\4 \end{pmatrix} = \begin{pmatrix} -1.5\\2 \end{pmatrix} \qquad \qquad \hat{\mathbf{v}} = \frac{1}{5}\begin{pmatrix} -3\\4 \end{pmatrix}$$

- ➤ Unit vector factors out the magnitude,
 - ▶ Watch out for MATLAB vectors (e.g., PCA), they give you unit vectors.

Dot product / Projection

Dot Product:

- Two vectors are orthogonal if their dot product equals to 0, i.e., If $\mathbf{a} \perp \mathbf{b}$, then $\mathbf{a} \cdot \mathbf{b} = 0$
- **>>** Note: **a** . **a** = ||**a** $||^2$.

Independence / Basis set

Definition: $\{v_1, \ldots, v_n\}$ is independent if and only if no vector in this set can be written as a linear combination of the rest:

$$_{1}\mathbf{v_{1}}+...+\beta_{n}\mathbf{v_{n}}=\mathbf{0}$$
 iff $\forall \beta_{i}=0$

Independent set of vectors in \Re^2

Dependent set of vectors in \Re^2

- Unique weights for decomposition into an independent set.
- ▶ Basis set: a set of independent vectors that span V,
 » e.g., v₁ and v₂ form a basis set for ℜ² but not ℜ³.

Matrix (Addition / Scalar Multiplication / Transpose)

→ Matrix: rectangular table of elements

• used to describe linear equations.

$$\mathbf{A} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ \mathbf{m} \times \mathbf{n} \\ \mathbf{Matrix} & \begin{bmatrix} a_{m1} & \cdots & a_{mn} \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \quad \mathbf{A} + \mathbf{B} = \begin{bmatrix} 2 + 1 & 4 + 3 \\ 4 + 1 & 11 + 2 \end{bmatrix} = \begin{bmatrix} 3 & 7 \\ 4 & 13 \end{bmatrix}$$

$$\mathbf{B}^{T} = \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} 3.2 & 3.4 \\ 3.4 & 3.11 \end{bmatrix} = \begin{bmatrix} 6 & 12 \\ 12 & 33 \end{bmatrix}$$
Note: A is symmetric, i.e., $\mathbf{A}^{T} = \mathbf{A}$

Matrix Multiplication

→ Matrix multiplication is NOT commutative:

• i.e., generally, $AB \neq BA$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}; \mathbf{B} = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix}$$

$$\mathbf{A.B} = \begin{bmatrix} 1.2 + 2.1 & 1.3 + 2.0 \\ 0.2 + 1.1 & 0.3 + 1.0 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ 1 & 0 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 2.1 + 3.0 & 2.2 + 3.1 \\ 1.1 + 0.0 & 1.2 + 0.1 \end{bmatrix} = \begin{bmatrix} 2 & 7 \\ 1 & 2 \end{bmatrix}$$

Matrix Multiplication

» Dimension of matrices must match

$$C_{(m,p)} = A_{(m,n)} B_{(n,p)}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 3 & 1 \end{bmatrix}; \mathbf{B} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 1.3 + 0.2 + 2.1 & 1.1 + 0.1 + 2.0 \\ -1.3 + 3.2 + 1.1 & -1.1 + 3.1 + 1.0 \end{bmatrix} = \begin{bmatrix} 5 & 1 \\ 4 & 2 \end{bmatrix}$$

Solving Linear Equations

$$\begin{array}{rcl} a_{11}x_1 + \cdots + a_{1n}x_n & = & b_1 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + \cdots + a_{mn}x_n & = & b_n \end{array}$$

$$Ax = b$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ \mathbf{m} \times \mathbf{n} \\ \mathbf{Matrix} & \begin{bmatrix} a_{m1} & \cdots & a_{mn} \end{bmatrix} \mathbf{m} \text{ rows} \\ \mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$
n columns

Matrix (Geometric interpretation)

$$\mathbf{A}\mathbf{x} = \mathbf{b} \qquad \mathbf{A} = \begin{bmatrix} 2 & 4 \\ 4 & 11 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Solve for x:

$$\mathbf{x} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$
 Column space: $x_1 \begin{bmatrix} 2 \\ 4 \end{bmatrix} + x_2 \begin{bmatrix} 4 \\ 11 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

N. Company

How to solve for x in Ax = b?

(M equations = N unknowns)

- ➤ How many equations do I need to solve for 3 unknowns?
 - In general: M equations, N unknowns.
 - ▶ Can we guarantee a unique solution when M=N?

Demonstration:

http://demonstrations.wolfram.com/PlanesSolutionsAndGaussianEliminationOfA33LinearSystem/

Solve $\mathbf{A}\mathbf{x} = \mathbf{b}$ by finding \mathbf{A}^{-1}

(M equations = N unknowns)

- \rightarrow If Ax = b and we want to solve for x:
 - We want $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$
- → Does A⁻¹ always exist?
 - ▶ Only if **A** is a square matrix (i.e., M=N).
 - Only if determinant of A is not 0.
- \rightarrow How do we find determinant and A^{-1} ?
 - Can use Gaussian elimination to find determinant.
 - ▶ Can use Cramer's rule to find A⁻¹.
 - ▶ Or use MATLAB ©!!!!

TO N

Undetermined case

(M equations < N unknowns)

Independent set of vectors in \Re^2

- \rightarrow M = N
- **▶** Vectors span 2 dimension
 - \rightarrow Rank = 2.
 - \rightarrow Nullity = N-R = 0.

Independent set of vectors in \Re^3

- → M < N
 </p>
- → Vectors span 2 dimension
 - ightharpoonup Rank = 2.
 - Nullity = N-R = 1.

Null-space

(M equations < N unknowns)

- → M < N
 </p>
 - \rightarrow Rank = 2
 - ► Nullity = 1
- There is no unique solution since we are in an underdetermined case.
 - ▶ Any point lying on the red line is a valid solution!
- **>>** How do we find A^{-1} when A is not square (M ≠ N)?
 - Pseudo-inverse.
 - "Do the best we can do, given what we have."

Undetermined soln in MEG

▶ In MEG:

- \rightarrow 306 sensors (M = 306 equations).
- ▶ 6000 dipole estimates (N = 6000 unknowns).
- ▶ M << N.
- MNE: uniqueness comes from other constraints.

- Side topics:
 - ➤ How to obtain pseudo-inverse?
 - **▶** Singular Value Decomposition.
 - ➤ Eigenvalues, eigenvectors.
 - \rightarrow $Ax = \lambda x$

Overdetermined case

(M equations > N unknowns)

→ Experiment:

- ▶ Relationship between number of people wanting me to stop talking (*y*) as a function of time (*t*).
- $Model: \hat{y} = C_0 + C_1 t$
 - » C_0 : baseline Care-Factor; C_1 : drift in Attention.
 - » Data collected (y: reported distractions) at time t_1 =0 (y=y₁); t_2 =10 (y=y₂); t_3 =30 (y=y₃); t_4 =40 (y=y₄).

$$\mathbf{A}\mathbf{x} = \mathbf{b} \quad \begin{array}{c} C_0 + t_1 C_1 = y_1 \\ C_0 + t_2 C_1 = y_2 \\ C_0 + t_3 C_1 = y_3 \\ C_0 + t_4 C_1 = y_4 \end{array} \quad \mathbf{A} = \begin{bmatrix} 1 & 0 \\ 1 & 10 \\ 1 & 30 \\ 1 & 40 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} C_0 \\ C_1 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$$

LMMSE

- ▶ Framework: estimate a set of weights (C_0 and C_1) such that the error (e) between our observed data (\mathbf{b}) and our weighted design matrix (\mathbf{A}) is minimum,
 - i.e., "minimize" $e = b Ax = y (C_0 \cdot 1 + C_1 \cdot t)$
 - Linearly Minimize by Mean Square Error: $||\mathbf{e}||^2$

LMMSE / GLM

- ➤ Closed form solution (LMMSE)
 - Find x that minimizes $||\mathbf{A}\mathbf{x} \mathbf{b}||^2$
 - Least square solution to Ax = b: $x = (A^TA)^{-1}A^Tb$
- **▶** Now consider Random variables as vectors (GLM):
 - Least square solution to $X\beta = Y$: $\beta = (X^TX)^{-1} X^T Y$
 - where Y = Observed data; X = Design matrix; $\beta = Parameter$

GLM in a nut-shell (fMRI context)

$$Y = X\beta + \varepsilon$$

- **→ Y** : BOLD signal at various time at a single voxel
- **▶ X** : Designed matrix
- β: Estimation of each component in X(Parameters estimation)
- » ε : Noise (also known as residuals, i.e., anything that is not modeled by X)

Error (ϵ) is orthogonal to all our modeled parameters:

β= Projection onto each modeled parameter in Design matrix **X**

Useful Resources

- **▶** MIT OpenCourseWare:
 - ▶ 18.06 Linear Algebra (Strang's Lecture series)
 - http://ocw.mit.edu/OcwWeb/Mathematics/18-06Spring-2005/CourseHome/
- **▶** Good link between Linear Algebra and MATLAB:
 - $\color{red} \color{red} \color{blue} \underline{ http://www.ling.upenn.edu/courses/ling525/linear\ algebra\ review.html} \\$
- → Why.N.How Wiki:
 - $\qquad \qquad \textbf{https://gate.nmr.mgh.harvard.edu/wiki/whynhow/index.php/Main_Page}\\$

