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Format of tutorial

Why do we care about Linear Algebra?
What is a vector?What is a vector?

Geometric interpretation.
Vector operations, “Norms,” Projections.
Independence, Basis set.

What is a matrix?What is a matrix?
Determinants, Inverse.
Under-determined solution / null-space / MEG.
Over-determined solution / LMMSE / fMRI.
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Why Linear Algebra?

What is linear algebra?
Study of vectors systems of linear equationsStudy of vectors, systems of linear equations…

Who cares?
Extensive applications in neurosciences.
Nice geometric interpretation of complex 
mathematical concepts, e.g., spectral coherence.

How do we use MATLAB?
MATrix LABoratory: fundamental knowledge in 
linear algebra matters!! 

What is a vector?
head

B
x2 X┴

Physical interpretation: a geometric entity 
characterized by a magnitude and a direction

AB=v
uuuv

tail
A

x1
X||

characterized by a magnitude and a direction.
Commonly encountered in Euclidean space.

In MEG: tangential and normal decomposition.
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Vector Addition
head

B
AB=v
uuuv CBC=w

uuuvx2

tail
A

AB=v

AC= =z v + w
uuuv

( ) ( )2 3= =v w

x1

( ) ( )
( ) ( ) ( )

2 0

2 3 5
2 0 2

= =

= = + =

v w

z v + w

Vector Subtraction
head

B
AB=v
uuuv CBC=w

uuuv
( )= − = + −z v w v w

x2

tail A

AB=v

( ) ( )2 3= =v w

x1

( ) ( )
( ) ( ) ( )

2 0

2 3 1( ) 2 0 2

= =

− −= − = − = + =

v w

z v w v + w
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“Norm”

2 2 2 2
1 2 3 ... nx x x x= + + + +x

“N ” i f di t f t

( )3
4

−=v ( )
{ }

1

1 2 3

1 2

...

max , ,...,

p p p p p

n

p

p
x x x x

x x x
∞

= + + + +

=

x

x2 2( 3) (4) 5= − + =v

Norm  is a measure of distance of a vector.
Default norm: L2-norm
Other norms: L1-norm; L∞-norm.

Scalar Multiplication / Unit Vector

v
1
2

v( )
( ) ( )1 1 3 1.5

4 22 2

3
4

− −=

−=

=

v

v ( )
2 2( 3) (4

3

5
1

)

45
v

= − + =

−=

v

$

v =
v
v

$

Unit vector factors out the magnitude,
Watch out for MATLAB vectors (e.g., PCA), they 
give you unit vectors.
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Dot product / Projection

1 1 ... c. osn na b a b θ+ + == a ba b
a ⊥ b

Dot Product:

T t th l if th i d t

a

b
θ

( . )b ba $ $
b

a
a ⊥ b

Projection

.cosθ =
a b
a b

Angle between 2 vectors:

Two vectors are orthogonal if their dot 
product equals to 0, i.e., If a ⊥ b ,then a . b = 0
Note: a . a = ||a||2.

Independence / Basis set
Definition: {v1, … , vn} is independent if and only if no vector 
in this set can be written as a linear combination of the rest:

1 n i... iff 0β β β+ + = ∀ =1 nv v 0

v1
0

v2

Independent set of vectors in  ℜ2

β1

β1v1 + β2v2

β2

v2

v1

v3

v1 + v2

v1+v2-v3= 0

Dependent set of vectors in  ℜ2

v2

v1

v1-v2= 0β1 v3

Unique weights for decomposition into an 
independent set.
Basis set: a set of independent vectors that span V,

» e.g., v1 and v2 form a basis set for  ℜ2 but not ℜ3.
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Matrix (Addition / Scalar 
Multiplication / Transpose)

Matrix: rectangular table of elements
used to describe linear equationsused to describe linear equations. 

111 na a

a a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A

L

M O M

L

m rows
m x n
Matrix

2 4 1 3;4 11 1 2
⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

A B

2 1 4 3 3 7
4 1 11 2 4 13

+ +⎡ ⎤ ⎡ ⎤+ = =+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
A B

1m mna a⎢ ⎥⎣ ⎦
n columns

Matrix

3.2 3.4 6 12. 3.4 3.11 12 333 ⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
A

4 1 11 2 4 13+ + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
A B

1 1
3 2

T ⎡ ⎤= ⎢ ⎥⎣ ⎦
B

Note: A is symmetric, i.e., AT = A

Matrix Multiplication

Matrix multiplication is NOT commutative:
i e generally AB ≠ BAi.e., generally, AB ≠ BA

1 2 2 3;0 1 1 0
⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

A B

1.2 2.1 1.3 2.0 4 3. 0 2 1 1 0 3 1 0 1 0
+ +⎡ ⎤ ⎡ ⎤= =+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

A B 0.2 1.1 0.3 1.0 1 0+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

2.1 3.0 2.2 3.1 2 7
1.1 0.0 1.2 0.1. 1 2

+ +⎡ ⎤ ⎡ ⎤= =+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
B A
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Matrix Multiplication

Dimension of matrices must match
C = A BC (m,p) = A (m,n) B (n,p)

3 11 0 2 ; 2 11 3 1 1 0
⎡ ⎤⎡ ⎤= = ⎢ ⎥−⎢ ⎥⎣ ⎦ ⎣ ⎦

A B

1 3 0 2 2 1 1 1 0 1 2 0 5 1⎡ ⎤ ⎡ ⎤1.3 0.2 2.1 1.1 0.1 2.0 5 1
1.3 3.2 1.1 1.1 3.1 1.0 4 2

+ + + +⎡ ⎤ ⎡ ⎤= =− + + − + +⎢ ⎥⎦
= ⎥ ⎢⎣ ⎣ ⎦

C BA

Solving Linear Equations

11 1 1 1n na x a x b+ + =L
M M M

111 na a⎡ ⎤
⎢ ⎥

L

⎡ ⎤ b⎡ ⎤

Ax = b

1 1m mn n na x a x b+ + =
M M M
L

1m mna a

⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A M O M

L

m rows

n columns

m x n 
Matrix

1

n

x

x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

x M

1

n

b

b

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

b M
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Matrix (Geometric interpretation)
2 4
4 11

⎡ ⎤= ⎢ ⎥⎣ ⎦
A 1

2

x
x

⎡ ⎤= ⎢ ⎥⎣ ⎦
x 2

1
⎡ ⎤= ⎢ ⎥⎣ ⎦

bAx = b
Solve for x:

⎡ ⎤⎡ ⎤ ⎡ ⎤
3
1

⎡ ⎤= −⎢ ⎥⎣ ⎦
x

Solve for x:

1 2
4

114
2
1

2x x ⎡ ⎤
⎢+ =⎡ ⎤

⎢
⎡

⎥⎣ ⎦ ⎥⎣ ⎦
⎤

⎢ ⎥⎣ ⎦

4
11

⎡ ⎤
⎢ ⎥⎣ ⎦

3 2
4

⎡ ⎤
⎢ ⎥⎣ ⎦

Column space:

Row space: 2x1+ 4x2 = 2
x2

11 4
1

⎡− ⎤
⎢ ⎥⎣ ⎦

2
1

⎡ ⎤
⎢ ⎥⎣ ⎦

4x1 + 11x2 = 1
x1

x1 =3 ; x2 = -1

How to solve for x in Ax = b?
(M equations = N unknowns)

How many equations do I need to solve for 3 
unknowns?unknowns?

In general: M equations, N unknowns.
Can we guarantee a unique solution when M=N?

Demonstration:

http://demonstrations.wolfram.com/PlanesSolutionsAndGaussi
anEliminationOfA33LinearSystem/



Adrian KC Lee, Martinos Center, Why.N.How - Linear Algebra, 
11/06/08 9

Solve Ax = b by finding A-1

(M equations = N unknowns)

If Ax = b and we want to solve for x:
We want x = A-1bWe want x = A 1b

Does A-1 always exist?
Only if A is a square matrix (i.e., M=N).
Only if determinant of A is not 0.

How do we find determinant and A-1?How do we find determinant and A ?
Can use Gaussian elimination to find determinant.
Can use Cramer’s rule to find A-1.
Or use MATLAB ☺!!!!

Undetermined case
(M equations < N unknowns)

v2

Independent set of vectors in  ℜ2

β + β

v2

Independent set of vectors in  ℜ3

β + β

M = N

v1
0 β1

β1v1 + β2v2

β2

v1
0 β1

β1v1 + β2v2

β2

M < N
Vectors span 2 dimension

Rank = 2.
Nullity = N-R = 0.

Vectors span 2 dimension

Rank = 2.
Nullity = N-R = 1.
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Null-space 
(M equations < N unknowns)

There is no unique solution 
i isince we are in an 

underdetermined case.
Any point lying on the red line 
is a valid solution!

How do we find A-1 when A 
M < N

Rank = 2
is not square (M ≠ N)?

Pseudo-inverse.
“Do the best we can do, given 
what we have.”

Rank = 2
Nullity = 1

Undetermined soln in MEG

In MEG:
306 sensors (M = 306 equations)306 sensors (M = 306 equations).
6000 dipole estimates (N = 6000 unknowns).
M << N.
MNE: uniqueness comes from other constraints.

MNE Side topics:MNE 
estimate Null-space Side topics:

How to obtain pseudo-inverse?
Singular Value Decomposition.
Eigenvalues, eigenvectors.
Ax =  λx 
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Overdetermined case
(M equations > N unknowns)

Experiment:
Relationship between number of people wantingRelationship between number of people wanting 
me to stop talking (y) as a function of time (t).
Model: y = C0 + C1t

» C0: baseline Care-Factor; C1: drift in Attention.
» Data collected (y: reported distractions) at time t1=0 

(y=y1); t2=10 (y=y2); t3=30 (y=y3); t4=40 (y=y4).

^

(y y1); t2 10 (y y2);  t3 30 (y y3); t4 40 (y y4).

Ax = b 1 0
1 10
1 30
1 40

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

A 0
1

C
C

⎡ ⎤= ⎢ ⎥⎣ ⎦
x

1
2
3
4

y
y
y
y

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

b
0 1 1 1

0 2 1 2

0 3 1 3

0 4 1 4

C t C y
C t C y
C t C y
C t C y

+ =
+ =
+ =
+ =

Results (Linear regression)

Observations:

0 0

y
20

minimize
e = y ŷ

y =1.1+0.4t^

Model: y = C0.1+ C1.t^

t = 0, y = 0

t = 10, y = 8

t = 30, y = 8

t = 40, y = 20  

0

8

t

e = y - y
e = b – Ax

10 20 30 40

Ax = b 1 0
1 10
1 30
1 40

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

A 0
1

C
C

⎡ ⎤= ⎢ ⎥⎣ ⎦
x

1
2
3
4

y
y
y
y

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

b
0 1 1 1

0 2 1 2

0 3 1 3

0 4 1 4

C t C y
C t C y
C t C y
C t C y

+ =
+ =
+ =
+ =

t10 20 30 40
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LMMSE
Framework: estimate a set of weights (C0 and C1) 
such that the error (e) between our observed data (b) 
and our weighted design matrix (A) is minimum,and our weighted design matrix (A) is minimum,

i.e., “minimize” e = b – Ax = y – (C0 . 1 + C1 . t)
Linearly Minimize by Mean Square Error: || e ||2

y
20

Model: y = C0.1+ C1.t

y =1+0 4t^

^

t

y e

0

8

10 20 30 40 t

y =1+0.4t

1

C0

C1

y = C0.1+ C1.t^

LMMSE / GLM
Closed form solution (LMMSE)

Find x that minimizes ||Ax - b||2

Least square solution to Ax = b: x = (ATA)-1ATb

N id R d i bl (GLM)

y
20

Model: y = C0.1+ C1.t

y =1+0 4t^

^

t

y e

Now consider Random variables as vectors (GLM):
Least square solution to Xβ = Y: β = (XTX)-1 XT Y
where Y = Observed data; X = Design matrix; β = Parameter 
estimation

0

8

10 20 30 40 t

y =1+0.4t

1

C0

C1

y = C0.1+ C1.t^
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GLM in a nut-shell (fMRI context)

Y = Xβ + ε
Y BOLD i l i

Y

X

Error (ε) is orthogonal to all 
our modeled parameters: 

ε

Y : BOLD signal at various 
time at a single voxel
X : Designed matrix
β : Estimation of each 
component in X 
(Parameters estimation)

X

β= Projection onto 
each modeled 
parameter in Design 
matrix X

ε : Noise (also known as 
residuals, i.e., anything 
that is not modeled by X)

Vectors → Statistics

a .cosθ =
a b
a b

Angle between 2 vectors:

b
θ a b

Min. MSE: σε
2

σε
2 = σY

2 - (σY cos θ)2σε

Y%

θ

[ ] cos

cos

YX Y X

YX

Y X

E YXσ σ σ θ
σθ ρ

σ σ

= =

= =

% %

2 2(1 )
Y

MMSE σ ρ= −
σY

X%
θ

ρ = correlation coefficient

2

,

,
,

,

( )
( ) ( )

( ) x y
x

x x y y
y

f
f f

f =M
C

C C
Coherence measure 
(Gross et al, 2001):

σX

Y: Data, X: estimate
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Useful Resources

MIT OpenCourseWare:
18 06 Linear Algebra (Strang’s Lecture series)18.06 Linear Algebra (Strang s Lecture series)
http://ocw.mit.edu/OcwWeb/Mathematics/18-06Spring-2005/CourseHome/

Good link between Linear Algebra and MATLAB: 
http://www.ling.upenn.edu/courses/ling525/linear_algebra_review.html

Wh N H WikiWhy.N.How Wiki:
https://gate.nmr.mgh.harvard.edu/wiki/whynhow/index.php/Main_Page


