Why ‘N’ How seminar series - ANOVA and General Linear Models

Hari Bharadwaj

Research Affiliate, MGH Neurology

December 17, 2009
Outline

1. Detection and Hypothesis testing
 - Basic problem

2. ANOVA revisited
 - 2 sample t-test
 - One-way ANOVA
 - Correlation

3. The General Linear Model (GLM) perspective
 - GLM and Design matrices
 - The most general GLM
 - Contrasts and Interactions

4. Non-parametric approaches

5. Multiple Comparisons and Topological Inference
2 Alternatives discrimination problem

\(\mathcal{H}_1: \) There is an ‘effect’
\(\mathcal{H}_0: \) There is no ‘effect’

- Example: \(\mathcal{H}_1: \) Average IQ of Group1 subjects < Group2 subjects
 \(\mathcal{H}_0: \) Average IQ of Group1 subjects = Group2 subjects

- Given data we wish to probabilistically test out the hypotheses
Universal Frequentist Recipe

ALL univariate statistical tests entail the following:

1. **Construct** H_0 and H_1, could be competing models
Universal Frequentist Recipe

ALL univariate statistical tests entail the following:

1. **Construct** \mathcal{H}_0 and \mathcal{H}_1, could be competing models
2. **Calculate** a statistic, a scalar (T), that summarizes the effect you are trying to capture (example: difference in mean IQs of 2 groups)
Universal Frequentist Recipe

ALL univariate statistical tests entail the following:

1. **Construct** \(\mathcal{H}_0 \) and \(\mathcal{H}_1 \), could be competing models
2. **Calculate** a statistic, a scalar \((T)\), that summarizes the effect you are trying to capture (example: difference in mean IQs of 2 groups)
3. **Determine** the distribution of \(T \) when \(\mathcal{H}_0 \) is true (Here is where usually many assumptions come in)
Universal Frequentist Recipe

ALL univariate statistical tests entail the following:

1. Construct \mathcal{H}_0 and \mathcal{H}_1, could be competing models
2. Calculate a statistic, a scalar (T), that summarizes the effect you are trying to capture (example: difference in mean IQs of 2 groups)
3. Determine the distribution of T when \mathcal{H}_0 is true (Here is where usually many assumptions come in)
4. If $p(T|\mathcal{H}_0) < 0.05$ or any other *ad hoc* threshold, reject \mathcal{H}_0 (This doesn’t necessarily mean we have evidence for \mathcal{H}_1)
Where we are...

1. Detection and Hypothesis testing
 - Basic problem

2. ANOVA revisited
 - 2 sample t-test
 - One-way ANOVA
 - Correlation

3. The General Linear Model (GLM) perspective
 - GLM and Design matrices
 - The most general GLM
 - Contrasts and Interactions

4. Non-parametric approaches

5. Multiple Comparisons and Topological Inference
2 group \(t \)-test as a linear regression

- \(y_i = \mu + \mu_{\text{group}} + \epsilon_i \)
- Example: A given Group1 IQ = \(\mu_{\text{population}} + \mu_{\text{Group1}} + \epsilon_{\text{measurement}} \)
- Fitting IQ data to groups is like forming a linear regression between IQ (independent variable) and Group (The explanatory variable)
- Asking is IQs are different for the 2 groups is like asking if the slope of the regression between \(y \) (IQ) and \(x \) (group in this case) is not 0
- This generalises to multiple group tests (F-tests) or ANOVA
- This perspective also gives us ways to assess significance of covariance
GLM with 1 factor (group) \rightarrow One-Way ANOVA with 2 levels

Figure: The data y is explained by 1 factor, namely ‘group’ $x = 0$ or 1 denoting Group1 or Group2 for example. Does regressing y as a linear function of x help explain the variance in y better than when not modeled as a function of x?
ANOVA revisited

2 sample t-test

F test instead of t test

- Is \(y = \mu_{\text{group}} + \mu + \epsilon \) a better model than \(y = \mu + \epsilon \)?
- Fit both models and see if gives one smaller errors \(\epsilon \) than the other
- Let \(S_1 \) be the sum of squared errors after fitting model 1 and \(S_2 \) the sum of squared errors after fitting model 2 (null model): Is \(S_1 \) significantly smaller than \(S_2 \)? (Use our recipe)

\[
F = \frac{(S_2 - S_1) / (k_2 - k_1)}{S_1 / k_1} = \frac{\text{Explained Variance}}{\text{Unexplained Variance}} = \frac{\text{Between Group Variability}}{\text{Within Group Variability}}
\]

- Under \(H_0 \), \(F \) is \(F \)-distributed with \(k_2 - k_1, k_1 \) degrees of freedom
- The p-values should be the same as from a 2 sample t-test, but we wont know which group’s mean is higher
Full and Reduced models

- **Full Model:** \(y_i = \mu + \mu_{\text{group}} + \epsilon_i \)

\[
\begin{pmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_{n-1} \\
 y_n
\end{pmatrix}
= \begin{pmatrix}
 \mu \\
 \mu \\
 \vdots \\
 \mu \\
 \mu
\end{pmatrix}
+ \begin{pmatrix}
 \mu_a - \mu \\
 \mu_a - \mu \\
 \vdots \\
 \mu_b - \mu \\
 \mu_b - \mu
\end{pmatrix}
+ \begin{pmatrix}
 y_1 - \mu_a \\
 y_2 - \mu_a \\
 \vdots \\
 y_{n-1} - \mu_b \\
 y_n - \mu_b
\end{pmatrix}
\]

- **Reduced Model:** \(y_i = \mu + \epsilon_i \)

- Under \(H_0 \), we are just splitting the degree of freedom of \(\epsilon \) into 2 parts \(\Rightarrow \) F-test using sum of squares \(\rightarrow F(1, n - 2) \)

- If the Full model is significantly better than the reduced model, it is said that the **main effect** of group is significant
F distribution - A reminder

Figure: Distribution of sum of squared mean-zero normal variables
One way 2 level ANOVA example

- 2 Group IQs: Group2s = 87, 110, 93, 99, 75, 102, 90, 83, 100, 70
 Group1s = 77, 81, 64, 100, 84, 72, 69, 90, 68, 70
- $t = 2.5138$, $df = 18$, $p = 0.0217 < 0.05$
- $F = 6.3192$, $df = 1, 18$, $p = 0.0217 < 0.05$
- Note that for a 2 group analysis, $F_{\text{anova}} = t^2$
One way ANOVA with 3 levels

- With GLMs, we need not restrict to 2 levels:
 Group1 = 87, 110, 93, 99, 75, 102, 90, 83, 100, 70
 Group2 = 77, 81, 64, 100, 84, 72, 69, 90, 68, 70
 Group3 = 88, 87, 98, 120, 111, 97, 89, 132, 114, 126

- Same question asked: Is there any dependence on group (when \#groups > 2)?

- Here IQ (y) is modeled as a linear function of 2 group differences

 \[F(2, 17) = 11.05, \ p = 0.0003 \]

- Degrees of freedom is the rank of the linear subspace of \(\mathcal{R}^n \) spanned by each explanatory variate: The number of independent variables in the set
One way ANOVA with continuous explanatory variable: Correlation

- Does IQ depend on age?
- Same as asking ‘Is IQ correlated with AGE’?
- 10 subjects:
 - IQ \(y\) = 87, 110, 93, 99, 75, 102, 90, 83, 100, 70
 - AGE \(x\) = 9, 15, 9, 10, 10, 12, 8, 10, 11, 7
- \(y = \mu + \beta x + \epsilon\) versus \(y = \mu + \epsilon\): Is one significantly better than the other
- \(F\) - test would give us the answer, \(p = 0.0095\)
- Both age and group as factors explaining IQ \(\Rightarrow\) 2 way ANOVA
Where we are...

1. Detection and Hypothesis testing
 - Basic problem

2. ANOVA revisited
 - 2 sample t-test
 - One-way ANOVA
 - Correlation

3. The General Linear Model (GLM) perspective
 - GLM and Design matrices
 - The most general GLM
 - Contrasts and Interactions

4. Non-parametric approaches

5. Multiple Comparisons and Topological Inference
1 way 2 group anova revisited

Let the groups have \(\frac{n}{2} \) subjects each:

\[
\begin{pmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_{n-1} \\
 y_n
\end{pmatrix}
= \begin{pmatrix}
 \mu \\
 \mu \\
 \vdots \\
 \mu \\
 \mu
\end{pmatrix}
+ \begin{pmatrix}
 \mu_a - \mu \\
 \mu_a - \mu \\
 \vdots \\
 \mu_b - \mu \\
 \mu_b - \mu
\end{pmatrix}
+ \begin{pmatrix}
 y_1 - \mu_a \\
 y_2 - \mu_a \\
 \vdots \\
 y_{n-1} - \mu_b \\
 y_n - \mu_b
\end{pmatrix}
\]

\[
\begin{pmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_{n-1} \\
 y_n
\end{pmatrix}
= \begin{pmatrix}
 1 & 1 \\
 1 & 1 \\
 \vdots & \vdots \\
 1 & -1 \\
 1 & -1
\end{pmatrix}
\begin{pmatrix}
 \mu \\
 \frac{1}{2}(\mu_a - \mu_b)
\end{pmatrix}
+ \begin{pmatrix}
 y_1 - \mu_a \\
 y_2 - \mu_a \\
 \vdots \\
 y_{n-1} - \mu_b \\
 y_n - \mu_b
\end{pmatrix}
\]

Thus it is an instance of the GLM: \(\mathbf{Y} = \mathbf{X}\beta + \mathbf{\epsilon} \)
Design matrix for 1 way 3 level ANOVA with 30 subjects

Figure: One way 3 level ANOVA has 3 experimental effects: 2 Group Differences and 1 Overall Mean
Design matrix - cell mode

Figure: Equivalent design matrix as 2 group differences and 1 overall mean: 3 different group means
The General Linear Model (GLM) perspective

Design matrix - 2 way ANOVA: 1 categorical and 1 continuous factor

Figure: Design matrix for 30 subjects divided into 3 groups of 10 with AGE as a covariate/factor. **What is the NULL model?** - A subset of the full design matrix.
Design matrix - 1 way repeated measures ANOVA with 2 conditions

Figure: 1 way ANOVA with block (subject) effects, 20 subjects each measured in 2 conditions: First 2 columns are the cells corresponding to the conditions and then other 10 model effects. What is the NULL model?
Where we are...

1. Detection and Hypothesis testing
 - Basic problem

2. ANOVA revisited
 - 2 sample t-test
 - One-way ANOVA
 - Correlation

3. The General Linear Model (GLM) perspective
 - GLM and Design matrices
 - The most general GLM
 - Contrasts and Interactions

4. Non-parametric approaches

5. Multiple Comparisons and Topological Inference
In general

\[Y = X\beta + \epsilon = (G_1 \quad H_1 \mid G_0 \quad H_0) \begin{pmatrix} \gamma_1 \\ \kappa_1 \\ \gamma_0 \\ \kappa_0 \end{pmatrix} + \epsilon \]

- All design using linear models and assuming a normal distribution with common error covariances are an instance of the above.
- \(G_1 \) and \(H_1 \) are interesting categorical and continuous factors respectively.
- \(G_0 \) and \(H_0 \) are uninteresting categorical and continuous factors.
- The null model contains only the partition with \(G_0 \) and \(H_0 \).
Where we are...

1. Detection and Hypothesis testing
 - Basic problem

2. ANOVA revisited
 - 2 sample t-test
 - One-way ANOVA
 - Correlation

3. The General Linear Model (GLM) perspective
 - GLM and Design matrices
 - The most general GLM
 - Contrasts and Interactions

4. Non-parametric approaches

5. Multiple Comparisons and Topological Inference
2 Groups, 2 Conditions: 2 way ANOVA with interactions

Figure: 2 way ANOVA with **block (subject)** effects, 20 subjects each measured in 2 conditions, divided into 2 groups: First 4 columns are the cells corresponding to every condition-group pair: (cond1, grp1), (cond1, grp2), (cond2, grp1) and (cond2, grp2). **How do we assess the main effect of group?**
The cells for the first 4 columns are (cond1, grp1), (cond1, grp2), (cond2, grp1) and (cond2, group2).

Let \(\mathbf{c} = (1, -1, 1, -1, 0, \ldots, 0)^T \): The data in the subspace of \(\mathbf{Xc} \) represent the variance because of group differences averaging over conditions.

Contrast matrix for main effect of group.
Contrast for main effect of condition

- The cells for the first 4 columns are (cond1, grp1), (cond1, grp2), (cond2, grp1) and (cond2, group2)
- Let $c = (1, 1, -1, -1, 0, \ldots, 0)^T$: The data in the subspace of Xc represent the variance because of condition differences averaging over groups
- Contrast matrix for **main effect of conditions**
The effect of one factor may depend on the level of another factor.

Example: Sleep hours modeled as a function of amount of exercise and weight of a person: Regular exercise increases the amount of sleep more for heavier people than for lighter people.

For our 2 group - 2 condition example: There may be group differences that are condition independent (main effects) but there might be group differences that occur only in one condition (interaction).

If x and y are the factors, an interaction is a dependance on xy.
The General Linear Model (GLM) perspective

Contrasts and Interactions

Contrast for interaction between group and condition

![Diagram showing contrast for interaction]

- The cells for the first 4 columns are (cond1, grp1), (cond1, grp2), (cond2, grp1), and (cond2, group2).
- Let \(\mathbf{c} = (1, -1, -1, 1, 0, \ldots, 0)^T \): The data in the subspace of \(\mathbf{X}_c \) represents the interaction **Difference of differences**
- Contrast matrix for **Interaction**
The General Linear Model (GLM) perspective

Contrasts and Interactions

Contrast for overall mean

- The cells for the first 4 columns are \((\text{cond1, grp1}), (\text{cond1, grp2}), (\text{cond2,grp1})\) and \((\text{cond2,group2})\)
- Let \(c = (1, 1, 1, 1, 0, \ldots, 0)^T\): The data in the subspace of \(Xc\) represents the effects common to each of the cells
- Contrast matrix for overall mean
With experimental effects along the columns of the design matrix

- Column 1 is group difference, column 2 is condition
- Column 3: interaction (Note that this is column1 (dot) column2
- Column 4: Overall mean
Some remarks

Number of experimental effects is the number of different means. Example: A 2 way anova with 2 groups and 3 conditions has 6 experimental effects: 1 group difference, 2 condition differences, 2 condition × group interactions and 1 overall mean.
Some remarks

- Number of experienmential effects is the number of different means. Example: A 2 way anova with 2 groups and 3 conditions has 6 experimental effects: 1 group difference, 2 condition differences, 2 condition × group interactions and 1 overall mean.

- We can group some of the experimental effects to make omnibus inferences. Example: In the above, the 2 condition differences can be taken together to assess the main effect of condition.
Some remarks

- Number of experimental effects is the number of different means. Example: A 2 way anova with 2 groups and 3 conditions has 6 experimental effects: 1 group difference, 2 condition differences, 2 condition \(\times \) group interactions and 1 overall mean.

- We can group some of the experimental effects to make omnibus inferences. Example: In the above, the 2 condition differences can be taken together to assess the main effect of condition.

- The null model is basically whatever is in the full model design excluding the effects of interest.
Some remarks

- Number of experimental effects is the number of different means. Example: A 2 way anova with 2 groups and 3 conditions has 6 experimental effects: 1 group difference, 2 condition differences, 2 condition × group interactions and 1 overall mean.

- We can group some of the experimental effects to make omnibus inferences. Example: In the above, the 2 condition differences can be taken together to assess the main effect of condition.

- The null model is basically whatever is in the full model design excluding the effects of interest.

- In practice the 2 models need not be fitted separately, concept of projections and orthogonal subspaces can be used from linear algebra.
Where we are...

1. Detection and Hypothesis testing
 - Basic problem

2. ANOVA revisited
 - 2 sample t-test
 - One-way ANOVA
 - Correlation

3. The General Linear Model (GLM) perspective
 - GLM and Design matrices
 - The most general GLM
 - Contrasts and Interactions

4. Non-parametric approaches

5. Multiple Comparisons and Topological Inference
Permutation tests: Example 1

IQ of 2 groups of 10 subjects each: Use our *recipe*

- Let $T = \text{mean IQ of group 1} - \text{mean IQ of group 2}$
- Under H_0, we want to know what the distribution of T is
- Non-parametric approach: Under H_0, group does not have any effect on data ⇒ We can assign group to subjects randomly
- Thus we can get many groupings, here we can have up to $\binom{20}{10} > 180,000$ permutations where the subjects from the 2 groups are mixed
- For each of these permutations we can get a T_{perm} ⇒ We have a distribution for T under H_0
- Is this generalizable to the population or applicable only to the cohort?
10 subjects who are politicians or have an IQ score less than 80 or both

H_1: Politicians are more likely to have IQ < 80

H_0: They are unrelated attributes

- The data is not normally distributed, its categorical
- Let $x_1 = (0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1)$ and $x_2 = (1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1)$ denote politician or not and IQ less than 80 or not respectively for the 10 subjects
- $d = \text{norm}(x_1 - x_2)$ is a good measure of the conjunction between the 2 attributes, $d = \sqrt{2}$ here
- Permute x_1 or x_2 values randomly and get a distribution for d and find $p(d \leq \sqrt{2})$
Where we are...

1. Detection and Hypothesis testing
 - Basic problem

2. ANOVA revisited
 - 2 sample t-test
 - One-way ANOVA
 - Correlation

3. The General Linear Model (GLM) perspective
 - GLM and Design matrices
 - The most general GLM
 - Contrasts and Interactions

4. Non-parametric approaches

5. Multiple Comparisons and Topological Inference
\(\mathcal{H}_1: \) Coin is biased
\(\mathcal{H}_0: \) Coin is unbiased

- Test: Toss coin 10 times, if Head or Tail shows up 9 or more times, reject \(\mathcal{H}_0 \) \((p(9 \text{ or more heads}/\mathcal{H}_0) \approx 0.02) \)
- This means if we repeat the test 100 times we’ll get 9 or more heads only 2 times on an average
- What if we have a million coins and test each of them with this test?
- On an average 20,000 coins will turn head more than 9 times even when none of them are biased \(\Rightarrow \) We have a family wise error which we must correct for
Why should we worry about MCP

Figure: When we do any voxelwise or a vertexwise statistical test (ANOVA or t-test or anything), we encounter typically an MCP of the order of 10,000. Worse, these tests are not independent of each other (unlike the coins problem).
Multiple testing corrections

- For discrete tests (example: multiple end point drug trials): Non-parametric family-wise testing or False Discovery Rate (FDR) approaches
- For data sets with an inherent topology (example: Time courses, whole brain signals, time-frequency maps): Random field theory or Non-parametric topological inference tests
References

